

# TROMETHAMINE UNSPECIFIED DEGRADATION PRODUCTS VIA GC-FID

## TABLE OF CONTENTS

| PURPOSE:                                                            | 3      |
|---------------------------------------------------------------------|--------|
| SCOPE:                                                              | 3      |
| RESPONSIBILITIES:                                                   | 3      |
| REFERENCES:                                                         | 3      |
| MATERIALS AND EQUIPMENT:                                            | 3      |
| METHOD PARAMETERS:                                                  | 4      |
| TABLE 1: OVEN TEMPERATURE PROGRAM                                   | 4      |
| TESTING PROCEDURE:                                                  | 5      |
| TABLE 2: EXAMPLE INJECTION SEQUENCE                                 | 5      |
| TABLE 3: SYSTEM SUITABILITY ACCEPTANCE CRITERIA                     | 6      |
| CALCULATIONS:                                                       | 6      |
| CHROMATOGRAMS:                                                      | 7      |
| FIGURE 1. IMPURITY-LEVEL STANDARD SOLUTION (0.2 MG/ML TROMETHAMINE) | 7      |
| FIGURE 2. TRIS LOQ SOLUTION (0.006 MG/ML TROMETHAMINE)              | 8      |
|                                                                     |        |
|                                                                     | SCOPE: |

#### 1. PURPOSE:

1.1. To provide Analysts with a procedure for determining Tromethamine unspecified degradation products determination by GC with FID determination.

#### 2. SCOPE:

- 2.1. This analytical method applies to the Tromethamine unspecified degradation products determination via GC-FID.
- 2.2. This Tromethamine unspecified degradation products method was validated as a Category II quantitative analytical method.
- 2.3. The unspecified degradation product specification is not more than 0.03% each.
- 2.4. The method applies to the Tromethamine raw materials, in-process materials, stability materials and finished goods material analysis.

#### 3. RESPONSIBILITIES:

- 3.1. The Director of Laboratory Services is responsible for the control, training, implementation and maintenance of this procedure.
- 3.2. The analytical chemists, or qualified designees, are responsible for performing the testing in this procedure.
- 3.3. The analytical chemists performing this procedure, with help from the Laboratory Manager if necessary, are responsible for documenting the results obtained from testing.
- 3.4. Safety: Standard laboratory safety regulations apply. Before working with any chemical and understand the Safety Data Sheet (SDS).

#### 4. REFERENCES:

- 4.1. BSI-PRL-0688, Analytical Method Validation Protocol: Tromethamine Assay and Degradation Products Via GC FID
- 4.2. BSI-RPT-1373, Analytical Method Validation Report: Tromethamine Unspecified Degradation Products Via GC-FID
- 4.3. BSI-SOP-0098, Balance SOP
- 4.4. BSI-SOP-0126, Laboratory Notebooks
- 4.5. BSI-SOP-0134, Pipette SOP
- 4.6. BSI-SOP-0244, VWR Gravity Convection Operation and Calibration (Model Number 414005-106)
- 4.7. BSI-SOP-0436, Analytical Methods Validation Master Plan
- 4.8. Shimadzu QP2010S GC/MS SOP
- 4.9. USP NF <621>

## 5. MATERIALS AND EQUIPMENT:

## 5.1. **Equipment:**

- 5.1.1. Analytical Balance
- 5.1.2. Micropipettes
- 5.1.3. GC-MS
  - 5.1.3.1. Make: Shimadzu
  - 5.1.3.2. Model: GC-2010, equipped with FID detector.
- 5.1.4. GC Column: 30m RTX-5 Amino column 0.53 mm ID 1.00 µm film thickness
  - 5.1.4.1. Make: Restek
  - 5.1.4.2. Part Number:12355
- 5.1.5. Laboratory Notebook

## 5.2. Reagents:

- 5.2.1. Purified Water/Milli-Q Water
  - 5.2.1.1. Supplier: BioSpectra Inc.
  - 5.2.1.2. Meets or Exceeds USP Purified Water specification.
- 5.2.2. Methanol, HPLC grade or equivalent

#### 5.3. Reference Standards:

- 5.3.1. Tromethamine Certified Reference Material (NIST)
- 5.3.2. A secondary qualified reference is acceptable for use

## 5.4. Supplies:

- 5.4.1. Micropipette Tips
- 5.4.2. Class A volumetric flasks
- 5.4.3. Polypropylene transfer funnels or weighing boats

#### 6. METHOD PARAMETERS:

#### 6.1. **GC-2010**

- 6.1.1. Column Oven Temperature: 150.0°C
- 6.1.2. Injection Mode: Split
- 6.1.3. Injector temperature 220.0°C
- 6.1.4. Detector temperature 275.0°C
- 6.1.5. Flow Control Mode: Linear Velocity
- 6.1.6. Pressure: 25.0 kPa
- 6.1.7. Total Flow: 23.3 mL/min
- 6.1.8. Column Flow: 3.05 mL/min
- 6.1.9. Linear Velocity: 29.2 cm/sec
- 6.1.10. Purge Flow: 5.0 mL/min
- 6.1.11. Split Ratio: 5
- 6.1.12. High Pressure Injection: OFF
- 6.1.13. Carrier Gas Saver: OFF
- 6.1.14. Splitter Hold: OFF

TABLE 1: OVEN TEMPERATURE PROGRAM

| Rate<br><sup>O</sup> C per Min | Temperature (°C) | Hold Time (min) |
|--------------------------------|------------------|-----------------|
| -                              | 150.0            | 3.00            |
| 10.00                          | 190.0            | 1.00            |
| 30.00                          | 270.0            | 2.00            |
| 0.00                           | 0.00             | 0.00            |

#### 6.2. Ready Checks

- 6.2.1. Column Oven: YES
- 6.2.2. HS: NO
- 6.2.3. FID: YES
- 6.2.4. HS Carrier: NO
- 6.2.5. HS Purge: NO
- 6.2.6. APC1: YES
- 6.2.7. FID Makeup: YES
- 6.2.8. FID1 H2: YES
- 6.2.9. FID1 Air: YES
- 6.2.10. External Wait: NO
- 6.2.11. Auto Flame On: Yes
- 6.2.12. Auto flame Off: Yes

- 6.2.13. Reignite: Yes
- 6.2.14. Auto Zero After Ready: Yes
- 6.2.15. Equilibrium Time: 0.0 min

#### 7. TESTING PROCEDURE:

#### 7.1. Solution Preparation

- 7.1.1. Note: Solutions may be scaled as needed
- 7.1.2. Diluent (6% Water in Methanol)
  - 7.1.2.1. Pipette 3 mL of water into a 50 mL volumetric flask, dilute to volume with methanol and mix.
- 7.1.3. Sample Solutions (20 mg/mL Tromethamine)
  - 7.1.3.1. Accurately weigh 1.00 g of Tromethamine and transfer into a 50 mL volumetric flask, pipette in 3 mL of water, mix, dilute to volume with methanol and mix well. Sonicate if necessary to completely dissolve the Tromethamine.
  - 7.1.3.2. Samples are to be prepared fresh each time for analysis.
- 7.1.4. Impurity-level Stock Standard Solution (20 mg/mL Tromethamine)
  - 7.1.4.1. Accurately weigh 1.00 g of Tromethamine CRS and transfer into a 50 mL volumetric flask, pipette in 3 mL of water, mix, dilute to volume with methanol and mix well.
  - 7.1.4.2. Sonicate if necessary to completely dissolve the Tromethamine.
  - 7.1.4.3. Expiration: 7 days after preparation.
- 7.1.5. Impurity-level Standard Solution (0.2 mg/mL Tromethamine)
  - 7.1.5.1. Pipette 0.5 mL of the Impurity-level Stock Standard into a 50 mL volumetric flask, add 3 mL of water, dilute to volume with methanol and mix well.
  - 7.1.5.2. Expiration: 7 days after preparation
- 7.1.6. LOQ Solution (0.006 mg/mL Tromethamine)
  - 7.1.6.1. Pipette 30 µL of the Impurity-level Stock Standard into a 100 mL volumetric flask, add 6 mL of water, dilute to volume with methanol and mix well.
  - 7.1.6.2. Label flask: LOQ Solution
  - 7.1.6.3. Prepare fresh each time of analysis.

#### 7.2. Injection Sequence

7.2.1. Inject samples with a split ratio of 5.

**TABLE 2: EXAMPLE INJECTION SEQUENCE** 

| Sample ID                                      | Number of Injections  |  |  |
|------------------------------------------------|-----------------------|--|--|
| System Suitability                             |                       |  |  |
| Diluent                                        | ≥1                    |  |  |
| LOQ                                            | ≥3                    |  |  |
| Impurity-level Standard                        | 5                     |  |  |
| Liberta di Liberta di Kalendaria di Liberta Sa | mples                 |  |  |
| Samples                                        | ≤6 (1 injection each) |  |  |
| Diluent                                        | 1                     |  |  |
| Impurity-level Standard (QC Check)             | 1                     |  |  |
| D 1.1 1.1.1                                    | 10 1111 1 1 1 1       |  |  |

- Repeat the sample injection sequence if additional samples are to be analyzed
- Samples may be substituted with diluent injections

## 7.3. System Suitability Criteria

TABLE 3: SYSTEM SUITABILITY ACCEPTANCE CRITERIA

| System Suitability Parameter                    | Acceptance Criteria |  |
|-------------------------------------------------|---------------------|--|
| The relative standard deviation of the          |                     |  |
| Tromethamine peak from the first (5) injections | NMT 20%             |  |
| of the Impurity-level Standard solution.        |                     |  |
| The average %Agreement between the first five   |                     |  |
| (5) Impurity-level Standard injections and each | 80% to 120%         |  |
| Impurity-level Standard (QC check)              |                     |  |
| Signal to noise ratio for the LOQ injection.    | NLT 10:1            |  |

#### 8. CALCULATIONS:

### 8.1. Unspecified Impurities

- 8.1.1. Report any peaks above the average peak area of the LOQ injections
- 8.1.2. Any peaks above the LOQ injections will result in the batch not meeting the specification limit of NMT 300 ppm.

## 9. CHROMATOGRAMS:

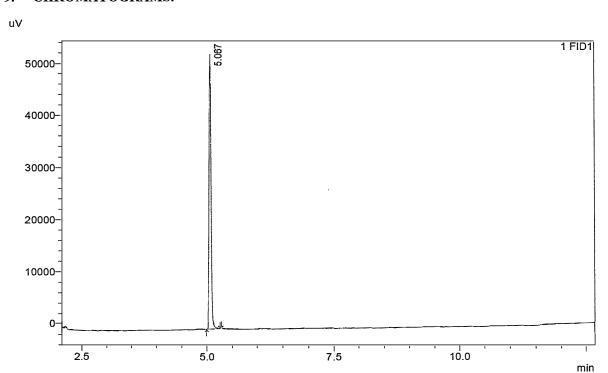



FIGURE 1. IMPURITY-LEVEL STANDARD SOLUTION (0.2 MG/ML TROMETHAMINE)

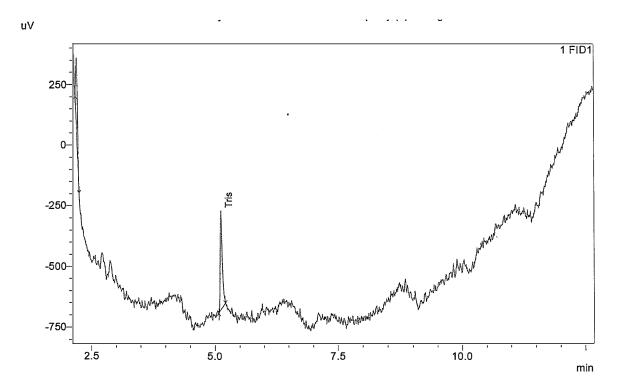



FIGURE 2. TRIS LOQ SOLUTION (0.006 MG/ML TROMETHAMINE)

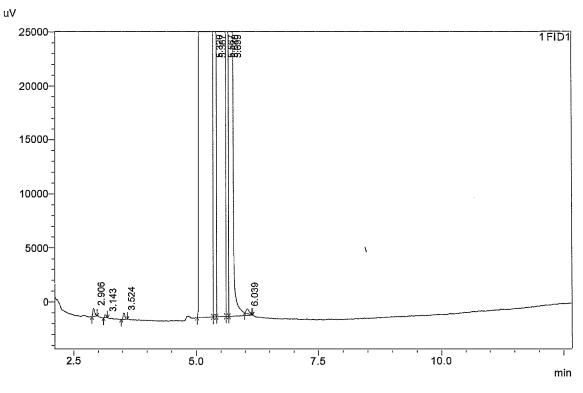



FIGURE 3. TRIS SAMPLE CHROMATOGRAM

The information contained herein is the confidential property of BioSpectra. The recipient is responsible for its safe-keeping and the prevention of unauthorized appropriation, use, disclosure and copying.