

100 Majestic Way, Bangor, PA 18013 / www.biospectra.us

UREA ASSAY AND ORGANIC IMPURITY DETERMINATION BY LIQUID CHROMATOGRAPHY WITH UV DETECTION

TABLE OF CONTENTS

1.	PURPOSE:	3
2.	SCOPE:	3
	TABLE 1: ACCEPTANCE CRITERIA	3
3.	RESPONSIBILITIES:	3
4.	REFERENCES:	3
5.	MATERIALS AND EQUIPMENT:	3
6.	PROCEDURE:	4
	TABLE 2: METHOD PARAMETERS	5
	TABLE 3: GRADIENT	
	TABLE 4: EXAMPLE INJECTION SEQUENCE	
	TABLE 5: SYSTEM SUITABILITY CRITERIA	7
	FIGURE 1: DILUENT CHROMATOGRAM	8
	FIGURE 2: ORGANIC IMPURITY STANDARD CHROMATOGRAM	9
	FIGURE 3: ORGANIC IMPURITY STANDARD ZOOMED CHROMATOGRAM	9
	FIGURE 4: SYSTEM SUITABILITY SOLUTION CHROMATOGRAM	10
	FIGURE 5: SYSTEM SUITABILITY SOLUTION ZOOMED CHROMATOGRAM	10
	FIGURE 6: ASSAY STANDARD SOLUTION CHROMATOGRAM	11
	FIGURE 7: INTEGRATION PARAMETERS	11

1. PURPOSE:

1.1. To provide Laboratory Analysts with a procedure for determining Assay and quantitating Organic Impurities by liquid chromatography with UV detection.

2. SCOPE:

- 2.1. This analytical method applies to the USP Urea Assay and Organic Impurity procedures on the Waters ACQUITY UPLC and Waters Alliance HPLC.
- 2.2. Impurity Specifications (Disregard any impurity peaks less than 0.05%)

Table 1: Acceptance Criteria			
Name	Acceptance Criteria NMT (%)		
Urea Related Compound A (RCA)	0.1		
Any Individual Unspecified Impurity	0.1		
Total Impurities	2.0		

2.3. The Assay specification for urea is 98.0% - 102.0%.

3. **RESPONSIBILITIES:**

- 3.1. The Laboratory Technology Manager is responsible for the control, training, implementation and maintenance of this procedure.
- 3.2. Laboratory Analysts and/or qualified designee are responsible for performing the testing as stated in this procedure.
- 3.3. Laboratory Analysts performing this procedure, with help and training from the Laboratory Technology Manager, are responsible for documenting the results obtained from testing.
- 3.4. Safety: Standard laboratory safety regulations apply. Before working with any chemical, read and understand the Safety Data Sheet (SDS).

4. **REFERENCES:**

- 4.1. BSI-PRL-0531, Analytical Method Verification Protocol: Urea Assay via Liquid Chromatography with UV detection
- 4.2. BSI-RPT-0979, Analytical Method Verification Report: Urea Assay by Liquid Chromatography with UV detection
- 4.3. BSI-SOP-0098, Balance SOP
- 4.4. BSI-SOP-0126, Laboratory Notebooks
- 4.5. BSI-SOP-0134, Pipette SOP
- 4.6. BSI-SOP-0348, Waters Acquity UPLC H-Class Plus SOP
- 4.7. USP <1225> Validation of Compendial Procedures
- 4.8. USP <1226> Verification of Compendial Procedures
- 4.9. USP-NF Current
- 4.10. Waters 2695 Separations Module Operator's Guide
- 4.11. Waters 2489 UV/Visible Detector Operator's Guide

5. MATERIALS AND EQUIPMENT:

- 5.1. Analytical Balance
- 5.2. Microbalance
- 5.3. Weighing supplies:
 - 5.3.1. Weighing boats/funnels and spatulas
- 5.4. Liquid Chromatographs:
 - 5.4.1. Waters ACQUITY UPLC with TUV Detector

- 5.4.2. Waters Alliance HPLC with UV Detector
- 5.5. Reagents:
 - 5.5.1. HPLC grade Water or equivalent
 - 5.5.2. HPLC grade Acetonitrile or equivalent
 - 5.5.3. Formic Acid or equivalent
- 5.6. Supplies:
 - 5.6.1. Class A Volumetric Flasks.
 - 5.6.2. Polypropylene transfer funnels or aluminum weighing boats
 - 5.6.3. Analytical Balance
 - 5.6.4. HPLC auto sampler vials and caps
 - 5.6.5. Micropipettes
 - 5.6.6. Micropipette Tips
 - 5.6.7. Transfer pipettes
 - 5.6.8. 10 mm Screw Thread Vial Convenience Kit
 - 5.6.8.1. Note: due to the volatility of the diluent, do not use pre-slit HPLC caps.
- 5.7. Reference Standards:
 - 5.7.1. USP Traceable Related Compound A Reference Standard
 - 5.7.2. USP Traceable Urea Reference Standard
- 5.8. LC Column:
 - 5.8.1. Ascentis Express OH5 90Å 15cm x 4.6 mm. 2.7µm
 - 5.8.2. Part number: 53778-U
- 5.9. Guard Column:
 - 5.9.1. Ascentis Express OH5 90Å 0.5cm x 4.6mm, 2.7µm
 - 5.9.2. Part number: 53782-U

6. PROCEDURE:

- 6.1. Solution preparation:
 - 6.1.1. Diluent:
 - 6.1.1.1. Prepare a 90:10 Acetonitrile: HPLC Water
 - 6.1.1.1.1. Combine 100 mL of HPLC water and 900 mL of Acetonitrile. Mix thoroughly and allow to equilibrate to RT.
 - 6.1.1.1.2. Solution may be scaled as needed.
 - 6.1.2. Mobile Phase:
 - 6.1.2.1. Mobile Phase A: 0.1% Formic acid in water
 - 6.1.2.1.1. Add 1 mL of formic acid to 1 L HPLC grade water and mix thoroughly
 - 6.1.3. Mobile Phase B: Acetonitrile
 - 6.1.4. Needle Wash: Use diluent listed above
 - 6.1.5. Purge Solvent (ACQUITY Only): Use diluent listed above
 - 6.1.6. RCA Stock Solution: (0.5 mg/mL RCA)
 - 6.1.6.1. Weigh and transfer 5 mg (\pm 10%) biuret into a 10 mL volumetric flask.
 - 6.1.6.2. Fill \sim 3/4 full with diluent and swirl to dissolve.
 - 6.1.6.3. Fill to volume with diluent.
 - 6.1.6.4. Mix by inversion.
 - 6.1.7. System Suitability Solution (10 mg/mL Urea, 0.01 mg/mL RCA)
 - 6.1.7.1. Weigh and transfer 250 mg (± 5%) urea reference standard into a 25 mL volumetric flask
 - 6.1.7.2. Pipette 500 µL of RCA Stock Solution into the common flask
 - 6.1.7.3. Fill \sim 3/4 full with diluent and swirl to dissolve
 - 6.1.7.4. Fill to volume with diluent
 - 6.1.7.5. Cap and mix by inversion

- 6.1.8. Urea Stock Standard Solution (5 mg/mL Urea, single replicate)
 - 6.1.8.1. Weigh and transfer 125 mg (± 5%) urea reference standard into a 25 mL volumetric flask
 - 6.1.8.2. Fill \sim 3/4 full with diluent and swirl to dissolve
 - 6.1.8.3. Fill to volume with diluent
 - 6.1.8.4. Mix by inversion
 - 6.1.8.5. Note: If performing both assay and organic impurity analyses, this solution may be substituted with SS1 or SS2 below
- 6.1.9. Standard Solution for Urea Assay (5 mg/mL Urea, duplicate)
 - 6.1.9.1. Weigh and transfer 125 mg (± 5%) urea reference standard into a 25 mL volumetric flask.
 - 6.1.9.2. Fill \sim 3/4 full with diluent and swirl to dissolve.
 - 6.1.9.3. Fill to volume with diluent.
 - 6.1.9.4. Mix by inversion.
 - 6.1.9.5. Prepare in duplicate.
 - 6.1.9.6. Label SS1 and SS2, respectively.
 - 6.1.9.7. Stability: Two (2) calendar days when stored, sealed with a fitted stopper, in clear glassware, at normal laboratory conditions.
- 6.1.10. Organic Impurity Standard (0.01 mg/mL Urea, 0.01 mg/mL RCA, single replicate)
 - 6.1.10.1. Pipette 200 μL of Urea Stock Standard Solution into a 100 mL volumetric flask.
 - 6.1.10.2. Pipette 2.0 mL of RCA Stock Solution into the common flask
 - 6.1.10.3. Fill to volume with diluent
 - 6.1.10.4. Mix by inversion
 - 6.1.10.5. Stability: One (1) calendar day when stored, sealed with a fitted stopper, in clear glassware, at normal laboratory conditions.
- 6.1.11. Assay Sample Solution (5.0 mg/mL, duplicate)
 - 6.1.11.1. Weigh and transfer 125 mg (\pm 5%) of urea into a 25 mL volumetric flask.
 - 6.1.11.2. Fill \sim 3/4 full with diluent and swirl to dissolve.
 - 6.1.11.3. Fill to volume with diluent.
 - 6.1.11.4. Mix by inversion.
 - 6.1.11.5. Prepare in duplicate
 - 6.1.11.6. Stability: Two (2) calendar day when stored, sealed with a fitted stopper, in clear glassware, at normal laboratory conditions.
- 6.1.12. Organic Impurity Sample Solution (10.0 mg/mL, single replicate)
 - 6.1.12.1. Weigh and transfer 250 mg (\pm 5%) of urea into a 25 mL volumetric flask.
 - 6.1.12.2. Fill \sim 3/4 full with diluent and swirl to dissolve.
 - 6.1.12.3. Fill to volume with diluent.
 - 6.1.12.4. Mix by inversion.
 - 6.1.12.5. Stability: One (1) calendar day when stored, sealed with a fitted stopper, in clear glassware, at normal laboratory conditions.
- 6.2. Instrument Setup
 - 6.2.1. Method Parameters

Table 2: Method Parameters			
Parameter	Setting		
Flow Type	Gradient Elution		
Diluent	90:10, Acetonitrile: Water		
Mobile Phase A	0.1% Formic Acid in Water		

Table 2: Method Parameters			
Parameter	Setting		
Mobile Phase B	Acetonitrile		
Flow Rate	1.0 mL/min		
Injection Volume	2 μL		
Detector	UV - 195nm		
Sample Temperature	10 °C		
Column Temperature	30 °C		
Column Compartment	30 cm		
Run Time	15 min		
Sampling Rate	10/sec		

6.2.2. Gradient Table

Table 3: Gradient				
Time (min)Mobile Phase A (%)Mobile Phase B (%)				
0.0	2.5	97.5		
7.0	10.0	90.0		
7.01	2.5	97.5		
15.0	2.5	97.5		

6.2.3. Injection Sequence

Table 4: Example Injection Sequence				
System Suitability Injections				
Diluent	≥2			
System Suitability Solution	5			
O.I. Standard ¹	3			
SS1 ²	3			
SS2 ²	1			
Sample Injections				
Diluent 1				
Samples ³	≤10			
System Suitability Solution	1			
¹ O.I. Standard may be omitted if performing assay only. ² SS1 and SS2 may be omitted if performing O.I. only. ³ Samples injections may be substituted with diluent injections.				

6.2.4. System Suitability Criteria

Table 5: System Suitability Criteria	
System Suitability Parameter	Acceptance Criteria
Instrument Precision : The %RSD of the Urea peak in the first five (5) System Suitability Solution injections	NMT 1.0%
Instrument Precision (QC Checks): The %RSD of the Urea peak in all <i>System Suitability Solution</i> injections	NMT 1.0%
Resolution: The resolution between the RCA peak and urea peak in the first <i>System Suitability Solution</i>	NLT 1.5
Tailing Factor: The USP tailing of the Urea peak in the first SS1 injection	NMT 2.0
Standard Agreement : The percent agreement between the three (3) SS1 injections and SS2 injection	99% - 101%

- 6.3. <u>Calculations:</u>
 - 6.3.1. Assay:
 - 6.3.1.1. Result = $(r_u / r_{SS1}) \times (C_{SS1} / C_u) \times 100$
 - 6.3.1.1.1. $r_u = peak$ area response of urea from the *Sample Solution*
 - 6.3.1.1.2. r_{SS1} = average peak area response of urea from all SS1 injections
 - 6.3.1.1.3. C_{SS1} = concentration of urea in the SS1 solution
 - 6.3.1.1.4. C_u = concentration of the *Sample Solution*
 - 6.3.2. Percent Urea Related Compound A:
 - 6.3.2.1. Result = $(r_u / r_{O.I.}) \times (C_{O.I.} / C_u) \times 100$
 - 6.3.2.1.1. r_u = peak area response of RCA from the Sample Solution
 - 6.3.2.1.2. r_{0.I}.= average peak area response of RCA from the three (3) *O.I. Standard injections*
 - 6.3.2.1.3. C_{0.I}.= concentration of RCA in the O.I. Standard
 - 6.3.2.1.4. $C_u =$ concentration of the *Sample Solution*
 - 6.3.3. Percent Unknown Impurity:
 - 6.3.3.1. Result = $(r_u / r_{O.I.}) \times (C_{O.I.} / C_u) \times 100$
 - 6.3.3.1.1. r_u = peak area response of an unknown impurity from the *Sample Solution*
 - 6.3.3.1.2. $r_{O.I}$ = average peak area response of urea from the three (3) *O.I.* Standard injections
 - 6.3.3.1.3. $C_{O.I.}$ = concentration of urea in the *O.I. Standard*
 - 6.3.3.1.4. C_u = concentration of the *Sample Solution*
 - 6.3.4. Standard Agreement:
 - 6.3.4.1. Result = $(r_{SS2} / r_{SS1}) \times (C_{SS1} / C_{SS2}) \times 100$
 - 6.3.4.1.1. r_{SS2} = Peak area response of urea from the SS2 injection
 - 6.3.4.1.2. r_{SS1} = average peak area response of urea from the three (3) SS1 injections
 - 6.3.4.1.3. C_{SS1} = concentration of urea in the SS1solution
 - 6.3.4.1.4. C_{SS2} = concentration of urea in the SS2 solution
 - 6.3.5. Standard Concentration
 - 6.3.5.1. Result = (W_{Std}/DF) x Purity
 - 6.3.5.1.1. W_{Std} = Weight of Standard
 - 6.3.5.1.2. DF = Dilution Factor (Total volume)

6.3.6. Sample Concentration

6.3.6.1. Result = W_{Smp} / DF

 W_{Smp} = Weight of Sample 6.3.6.1.1.

6.3.6.1.2. DF = Dilution Factor (Total volume)

6.4. Reporting

- 6.4.1. Assay: Calculate the % Urea for both replicates and report the average to 1 (one) decimal place.
 - 6.4.1.1. If any replicate has a result that is OOS, an OOS checklist will be issued to evaluate further.
 - 6.4.1.2. If the replicates vary by more than $\pm 2\%$ of each other, no results will be averaged or reported until evaluated by the Laboratory Technology Manager to determine if the results are valid/reportable or if any further action is required.

Table 6: Impurity Reporting			
Result	Reporting		
If < 0.05%	Report as < LOQ		
If \geq 0.05% and < 1.0%	Report to two (2) decimal places		
If≥1.0%	Report to one (1) decimal place		

- 6.5. Example Chromatograms and Integrations
 - 6.5.1. Diluent:

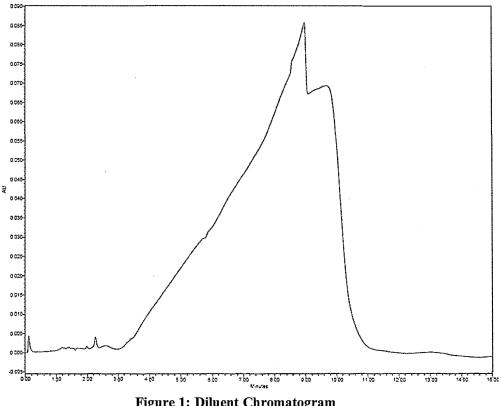
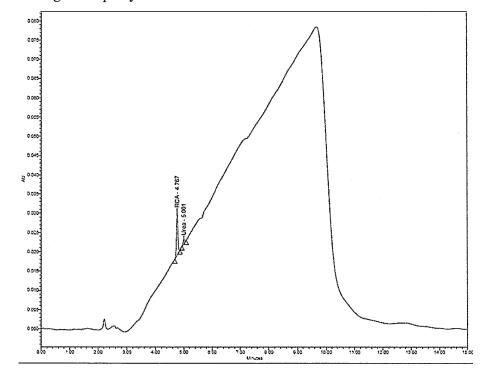
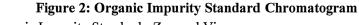




Figure 1: Diluent Chromatogram

6.5.2. Organic Impurity Standard - Full View

6.5.3. Organic Impurity Standard - Zoomed View

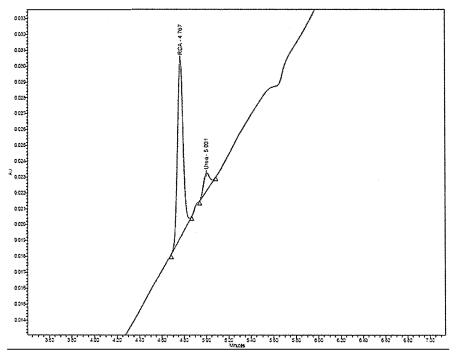
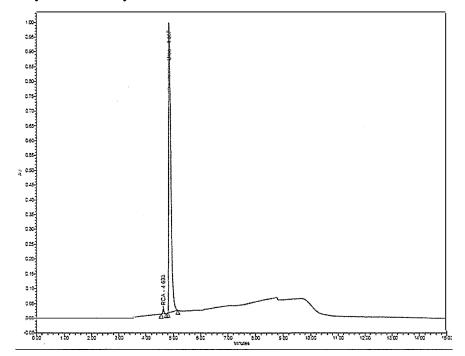
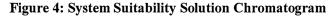




Figure 3: Organic Impurity Standard Zoomed Chromatogram

6.5.4. System Suitability Solution - Full View

6.5.5. System Suitability Solution – Zoomed View

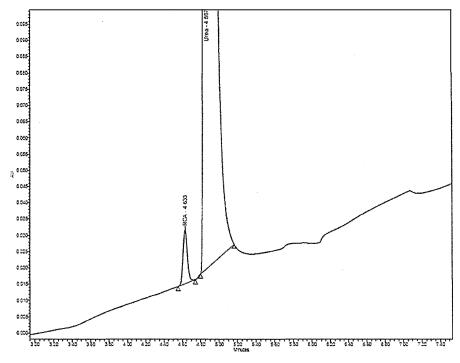


Figure 5: System Suitability Solution Zoomed Chromatogram

6.5.6. Assay Standard Solution

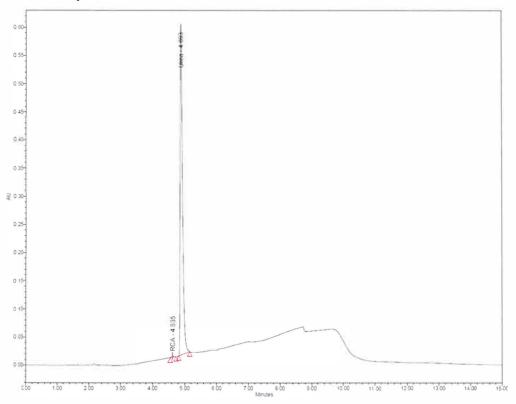


Figure 6: Assay Standard Solution Chromatogram

- 6.6. Example Integration Parameters for Empower software
 - 6.6.1. Ensure integrations for samples and standards are similar enough for accurate quantitation.
 - 6.6.2. Integration parameters may be adjusted in order to achieve similar integrations as shown in Section 6.5

🕞 LC Processing Method						
Integration Smoothing/Offset Components Impurity Peak Ratios (I/IS Ion Ratios) Default Amounts/Purity Named Groups Timed Groups Suitability Limits Noise a						
	Integration Algorithm					
	Apex Detection					
	Start (min)	3.500	End (min)	8.000		
Pe	ak Width (sec)	2.50	Detection Threshold	2.000e+001		
	Peak Integration					
	Liitolf %	0.000	Touchdown %	0.200		
м	linimum Area	2000	Minimum Height	0		
Э	Time (min)			Туре	Value	Stop (min)
1	0.000 G		Gaussian Skim			
2	2 5.500 5		Set Maximum Width (s	ec)	30.000	

Figure 7: Integration Parameters